

Cartografia tematica

GEOGRAPHIC COORDINATE SYSTEMS (GCS)

Latitude and Longitude

SPHEROIDS AND SPHERES

Geodesy:

Earth can be approximated by a spheroid generated by the rotation of an ellipse which axis are *a* and *b*.

The approximation gives a maximum difference of about 400 m between the spheroid and the actual Earth.

flattening $\alpha = \frac{a - b}{a}$

Most common spheroids:

Bessel (1841)	a=6377397 m	α=1/299.2
Clarke (1880)	a=6378243 m	α=1/293.5
Helmert (1906)	a=6378140 m	α=1/298.3
Hayford(1909)	a=6378388 m	α=1/297.0
Krassovsky(1942) a=6378245 m α =1/298.		
WGS84 (1984)	a=6378137 m	α=1/298.3

DATUMS are parameters used to align the spheroid in a particular area to closely fit the Earth surface

PROJECTED COORDINATE SYSTEMS

Projection is needed to represent the Earth surface on a planar coordinate system (MAP)

Projection is needed to represent the Earth surface on a planar coordinate system (MAP)

We have to pay something....

DEFORMATION:

EQUAL DISTANCE: we preserve the distance measurements along given directions

EQUAL AREA: we preserve the area measurements

CONFORMAL: we preserv ANGLES in all directions (and shapes as a consequence)

TYPES of PROJECTION

CONIC A cone is taken as tangent to a meridian (long) or a parallel (lat)

Proiezione conica equidistante

TYPES of PROJECTION

CYLINDRICAL

A cylinder is taken as tangent to a meridian (long), a parallel (lat) or any other great circle line

Transverse

Oblique

Mercator (XVI sec.)

UTM (Universal Transverse Mercator)

The so-called UTM system is a cylindrical transverse projection.

In order to reduce deformations, the spheroid is divided in 60 fuses, each one having extent 6°.

- complete name is NAVSTAR GPS: Navigation Satellite Timing And Ranging Global Positioning System
- It is based on a constellation of satellites, launched by U.S. Defense Department in 1989 and entirely managed by USA
- Since 1993, the system has been made available for civilian use, although the signal has been intentionally degraded to reduce the accuracy
- From 2000, un-degraded signals have been introduced *sub- conditionem*
- *Briefly*: satellites **send radio signals to Earth** which are codified and then processed by receiving devices to get UTC (universal time) and three coordinates (*X*, *Y*,*Z*).

GPS Nominal Constellation 24 Satellites in 6 Orbital Planes 4 Satellites in each Plane 20,200 km Altitudes, 55 Degree Inclination

- The constellation is composed of **24 satellites**, with two complete orbits every day.
- We need at least **3** satellites to mathematically determine the three coordinates with acceptable accuracy redundacy increases the precision of positioning
- In absence of obstructions, a presence of at least 4 (and maximum 12) satellites visible above the horizon is guaranteed in any point of Earth surface.
- Receiving devices always gives an accuracy estimation.
- Similar Systems: GLONASS (Russia, partially operative)
- *Future Systems:* **GALILEO** (European Union, precision better than 1 m, planned 2010; 2012 ...?)

Accuracy of positioning

Causa:	Effetto:
Ionospheric effects	± 5 meters
Ephemeris errors	± 2.5 meters
Satellite clock errors	± 2 meters
Multipath distortion	± 1 meter
Tropospheric effects	± 0.5 meters
Numerical errors	± 1 meter or less

• Attention! Artificial or natural obstacles (mountains, building, bridges, dense vegetation, fog...) deteriorate the quality of the signal to such extent that operation is compromised).

Modern portable receiving devices (trekking, bicycles...)