from Electrostatic to ElectroDynamics

Conductor

The motion of free charges of conductor balances the potential difference

$$
\text { (} \mathrm{E}=0 \text { in conductor }
$$

Surface is equipotential) what is needed ?

Electricity

The moving charges

Type 1 Conductors

Electrolitic Solutions

Rischio di
Folgorazionc

The moving charges in Metals

Type 2 Conductors

Electrons are the charges that move

Electric current

$I=$ quantity of charge through S in unit time

$\mathbf{V}=\mathrm{RI} \quad$ I Ohm's Law $\quad \mathrm{R}=$ resistence in V / A ohm (Ω)
R depends on type of conductor

II Ohm's Law

$$
\mathrm{R}=\sigma(\mathrm{L} / \mathrm{S})=(1 / \mathrm{c})(\mathrm{L} / \mathrm{S})
$$

$\sigma=$ resistivity in $\Omega \cdot \mathrm{m}$

	$\sigma_{0}($ in $\Omega \mathrm{m})$	$\alpha\left(\right.$ in $\left.^{\circ} \mathrm{C}^{-1}\right)$
Ag	1.6×10^{-8}	0.0038
Cu	1.7×10^{-8}	0.0039
Au	2.4×10^{-8}	0.0039
Al	2.8×10^{-8}	0.0039
Fe	10×10^{-8}	0.0050
Glass	10^{12}	
China	10^{13}	

$\mathrm{c}=$ conductivity in $\Omega^{-1} \mathrm{~m}^{-1}$
$\sigma($ material, $\mathbf{T})$
$\underset{\sim}{=} \sigma_{n}(1+\alpha \mathrm{t}) \rightarrow \mathrm{t}$ in ${ }^{\circ} \mathrm{C}$

Esercise

A 9.00 V power supply is in a circuit made with Cu wire. The diameter is 2 mm , the temperature $=0^{\circ} \mathrm{C}$, the resistence $=5.41 \Omega$

$$
\begin{aligned}
& 1 \text { Calculate the current in the circuit } \\
& \mathrm{I}=\mathrm{V} / \mathrm{R} \quad=9.00 / 5.41=1.66 \mathrm{~A} \\
& \quad 2 \text { Calculate the lenght of the wire }
\end{aligned} \begin{array}{r}
\mathrm{R}=\sigma(\mathrm{L} / \mathrm{S}) \\
\quad \begin{array}{r}
\sigma=\sigma_{0}(1+\alpha \mathrm{T}) \quad \mathrm{T}=0 \rightarrow \sigma=\sigma_{0}=1.7 \times 10^{-8} \Omega \mathrm{~m} \\
\mathrm{~L}=\mathrm{RS} / \sigma_{0}=\mathrm{R} \pi \mathrm{~d}^{2} / 4 \sigma_{0} \\
\quad=5.41 \cdot 3.14 \cdot 4 \times 10^{-6} /\left(4 \cdot 1.7 \times 10^{-8}\right)=999 \mathrm{~m}
\end{array}
\end{array}
$$

Representations

Resistences in series

$\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}=\mathrm{I}\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right)=\mathrm{IR}_{\text {Tot }}$

$$
\mathrm{R}_{\text {Tot }}=\sum_{1}^{n} \mathrm{R}_{i}
$$

Electricity

Resistences in Parallel

Electricity

Esercise

$$
\begin{aligned}
& \begin{array}{l}
\text { A continous } 60 \mathrm{~V} \text { power supply is in a circuit with three } \\
\text { resistences in series, } 9.5 \mathrm{k} \boldsymbol{\Omega}, 11.2 \mathrm{k} \boldsymbol{\Omega}, 17.1 \mathrm{k} \boldsymbol{\Omega} \text {. Calculate the } \\
\text { current }
\end{array} \\
& \begin{aligned}
\mathrm{I} & =\mathrm{V} / \mathrm{R}_{\mathrm{Tot}} \quad \mathrm{R}_{\mathrm{Tot}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \quad \mathrm{I}=\mathrm{V} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right) \\
& =60 /\left[(9.5+11.2+17.1) \times 10^{3}\right]=1.57 \mathrm{~mA}
\end{aligned}
\end{aligned}
$$

The same resistences are now in parallel. Calculate the current
$\mathrm{I}=\mathrm{V} / \mathrm{R}_{\text {Tot }} 1 / \mathrm{R}_{\text {Tot }}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}$

$$
=[1 / 9.5+1 / 11.2+1 / 17.1] \times 10^{-3}=0.25 \times 10^{-3} \Omega^{-1}
$$

$\mathrm{R}_{\text {Tot }}=4 \times 10^{3} \Omega=4 \mathrm{k} \Omega \quad \mathrm{I}=60 \cdot\left(0.25 \times 10^{-3}\right)=15 \mathrm{~mA}$

Microscopic Interpretation of Current

$\mathrm{n}=$ number of free e per unit volume
$Q=e n S d$ free charge in volume $=d S$

$\mathbf{t}=\mathbf{d} / \mathbf{v}_{\mathrm{d}}$ time for Q going through \mathbf{P}

$$
\mathrm{I}=\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{enSd}}{\mathrm{~d} / \mathrm{v}_{\mathrm{d}}} \quad \mathrm{I}=\mathrm{enSv}_{d}
$$

$\mathbf{P}=$ point where \mathbf{e} are counted
$\mathrm{f}_{\mathrm{a}}=-k \mathrm{v}_{\mathrm{d}}$ viscous friction in a conductor

Condutiore metallico

$$
f_{e}=-e E=e \Delta V / d \text { electric force }
$$

$$
\text { At equilibrium: } \mathrm{f}_{\mathrm{e}}=-\mathrm{f}_{\mathrm{a}} \Rightarrow \mathrm{v}_{\mathrm{d}}=\mathrm{e} \Delta \mathrm{~V} /(k \mathrm{~d})
$$

Canpo
Eletrico

$$
\mathrm{I}=\frac{\mathrm{e}^{2} \mathrm{n}}{k} \frac{\mathrm{~S}}{\mathrm{~d}} \Delta V=\frac{\Delta V}{\mathrm{R}}
$$

$$
\mathrm{R}=\frac{k}{\mathrm{e}^{2} \mathrm{n}} \frac{\mathrm{~d}}{\mathrm{~S}}
$$

$$
\sigma=\frac{k}{\mathrm{e}^{2} \mathrm{n}}
$$

Esercise

Calculate the drift velocity in a Cu wire (1 mm diameter), when the current is $=1 \mathrm{~A} .\left(\mathrm{m} . \mathrm{w}_{\mathrm{Cu}}=63.5, \varrho_{\mathrm{Cu}}=8.92 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)$
(Assume 1 free e per atom)

$$
\mathrm{I}=\mathrm{enS}_{d} \quad \mathrm{~V}_{d}=\frac{\mathrm{I}}{\mathrm{enS}}
$$

$\mathrm{n}=(\mathrm{n}$. of moles in unit volume $) \cdot \mathrm{N}_{\mathrm{A}}=\left[\varrho_{\mathrm{Cu}} /\left(\right.\right.$ p. $\left.\left.\mathrm{m}_{\mathrm{Cu}} \times 10^{-3}\right)\right] \mathrm{N}_{\mathrm{A}}$ $=\left[8.92 \times 10^{3} / 63.5 \times 10^{-3}\right] \cdot 6.02 \times 10^{23}=8.5 \times 10^{27} \mathrm{~m}^{-3}$
$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \quad \mathrm{S}=\pi \mathrm{d}^{2} / 4=3.14 \cdot\left(1^{2}\right) \times 10^{-6} / 4=7.85 \times 10^{-7}$
$\mathrm{v}_{\mathrm{d}}=1 /\left(1.6 \times 10^{-19} \cdot 8.5 \times 10^{27} \cdot 7.85 \times 10^{-7}\right)=9.4 \times 10^{-4} \mathrm{~m} / \mathrm{s}=3.4 \mathrm{~m} / \mathrm{h}$

Energy Dissipated in a Conductor

Non conservative forces are acting!

$$
d \mathrm{~L}_{\mathrm{AB}}=\mathrm{I} \Delta \mathrm{~V} d \mathrm{t}
$$

$$
d \mathrm{q}=\mathrm{I} d \mathrm{t}
$$

$$
\mathrm{P}=\frac{d \mathrm{~L}_{A B}}{d \mathrm{t}}=\mathrm{I}=\mathrm{I}^{2} \mathrm{R}=\frac{V^{2}}{\mathrm{R}}
$$

Joule's Law

Esercise

A continuos 60 V generator is in a circuit with 3 resistences in parallel, respectively $9.5 \mathrm{k} \Omega, 11.2 \mathrm{k} \Omega, 17.1 \mathrm{k} \Omega$. Calculate the power supplied by the generator

Joule's Law

$$
\mathrm{R}_{\mathrm{Tot}}=4 \mathrm{k} \Omega \quad \mathrm{P}=\mathrm{V}^{2} / \mathrm{R} \quad \mathrm{P}=(60)^{2} / 4000=0.9 \mathrm{w}
$$

The same resistences are now in parallel. Calculate the poer

$$
\mathrm{P}=\mathrm{VI}=60 \times 1.57 \mathrm{~mA} \times \text { Volt }=94.2 \mathrm{mw}=0.0942 \mathrm{w}
$$

